Cérebro humano mais complexo do que uma galáxia!!!

terça-feira, agosto 23, 2016

Human high intelligence is involved in spectral redshift of biophotonic activities in the brain

Zhuo Wang a,b, Niting Wang a,b, Zehua Li a,b, Fangyan Xiao a,c, and Jiapei Dai a,b,c,1

Author Affiliations

a Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China;

b Department of Neurobiology, The College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China;

c Chinese Brain Bank Center, Wuhan 430074, China

Edited by Michael A. Persinger, Laurentian University, Canada, and accepted by Editorial Board Member Marlene Behrmann May 20, 2016 (received for review March 24, 2016)

Source/Fonte: Daily Galaxy 

Significance

It is still unclear why human beings hold higher intelligence than other animals on Earth and which brain properties might explain the differences. The recent studies have demonstrated that biophotons may play a key role in neural information processing and encoding and that biophotons may be involved in quantum brain mechanism; however, the importance of biophotons in relation to animal intelligence, including that of human beings, is not clear. Here, we have provided experimental evidence that glutamate-induced biophotonic activities and transmission in brain slices present a spectral redshift feature from animals (bullfrog, mouse, chicken, pig, and monkey) to humans, which may be a key biophysical basis for explaining why human beings hold higher intelligence than that of other animals.

Abstract

Human beings hold higher intelligence than other animals on Earth; however, it is still unclear which brain properties might explain the underlying mechanisms. The brain is a major energy-consuming organ compared with other organs. Neural signal communications and information processing in neural circuits play an important role in the realization of various neural functions, whereas improvement in cognitive function is driven by the need for more effective communication that requires less energy. Combining the ultraweak biophoton imaging system (UBIS) with the biophoton spectral analysis device (BSAD), we found that glutamate-induced biophotonic activities and transmission in the brain, which has recently been demonstrated as a novel neural signal communication mechanism, present a spectral redshift from animals (in order of bullfrog, mouse, chicken, pig, and monkey) to humans, even up to a near-infrared wavelength (∼865 nm) in the human brain. This brain property may be a key biophysical basis for explaining high intelligence in humans because biophoton spectral redshift could be a more economical and effective measure of biophotonic signal communications and information processing in the human brain.

intelligence ultraweak photon emissions biophoton imaging glutamate brain slices

Footnotes

1 To whom correspondence should be addressed. Email: jdai@mail.scuec.edu.cn.

Author contributions: J.D. designed research; Z.W., N.W., F.X., and J.D. performed research; Z.W. and J.D. analyzed data; Z.L. contributed new reagents/analytic tools; and J.D. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. M.A.P. is a Guest Editor invited by the Editorial Board.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604855113/-/DCSupplemental.

FREE PDF GRATIS: PNAS